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Abstract

A physically motivated kinematical property to be demanded of a bending strain measure, beyond the ones that
are conventionally agreed upon, is proposed. Guided by the criterion, a bending strain measure is proposed for a
®rst-order, nonlinear, elastic shell theory that has the property of vanishing in rigid and pure-stretch deformations

of the shell. The measure is motivated by the Koiter±Sanders±Budiansky (KSB) bending measure of the ®rst-order,
linear shell theory, and is shown to linearize to the KSB measure about the undeformed shell. On retaining the
standard measure for membrane straining, work-conjugate stress and stress-couple resultants to the membrane and

bending strains are derived, as is the expression for the internal virtual work in terms of the proposed strains, stress
and stress-couple resultants. The bending strain is calculated for some simple deformations and compared with
other generalizations of the KSB measure of the linear theory. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is perhaps fair to say that unlike the direct functional relationship that exists between the deformed

length of a curve, the curve itself and the Right Cauchy-Green deformation tensor �fT � f; f being the

deformation gradient), there does not exist as precise a connection between the conventional measures

of bending used in shell theories and the physical notion of bending itself. The di�culty seems to lie in

formulating a precise statement of the physical notion of bending. The truth of the above statement is

borne out in the fact that if a cylindrical or spherical surface were to be subjected to a uniform radial

expansion, a deformation that is intuitively attributed to a `stretching' of the surface and not to
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`bending', the classical bending strain measure characterized by the change in the second fundamental
form is a�ected by the mid-surface stretching inherent in such a deformation mode and does not vanish
in such deformations. However, in the context of a ®rst-order linear theory of shells, the bending
measure proposed by Koiter (1960), Sanders (1959) and Budiansky and Sanders (1963) possesses the
property of vanishing in deformations characterized by a uniform normal de¯ection of the reference
shell (Niordson, 1985) up to the accuracy inherent in a theory employing linear kinematic measures,
apart from having other desirable properties, as pointed out in Budiansky and Sanders (1963). As will
be shown in this paper, a shell deformation characterized by a uniform normal de¯ection can be shown
to correspond to a non-bending deformation in a fairly precise way.

In this paper, an e�ort is made to formalize the physical notion of bending of a surface so that
kinematical necessary conditions to be demanded of a bending strain measure can be laid down. The
intention is not to prescribe conditions that make the choice of the bending strain measure unique Ð
indeed, guided by the situation regarding strain and deformation measures in the three dimensional
theory, there is no good reason to do so, since a given physically reasonable constitutive equation in
terms of one strain measure can always be transformed to produce a form appropriate for another
strain measure simply by substitution of kinematical entities. However, even in the three dimensional
theory, there are some necessary conditions, based on the physical notion the strain or deformation
measure represents, that are satis®ed by all such measures, e.g. vanishing or reducing to its reference
evaluation (which obviously does not depend on the deformation) in rigid deformations. Satisfying such
necessary conditions is important from the point of view of constitutive assumptions, especially in
theories where exact mid-surface kinematics is used so that properly invariant constitutive assumptions
need not be considered as linearization of some nonlinear statement, and the theory is complete in and
of itself. Such conditions can also make clear the essential coupling that exists between the existence of
bending moments and purely membrane deformations of a curved shell. For instance, a radial expansion
of a cylindrical shell cannot be associated in any reasonable way with a bending deformation of the
shell. However, it is impossible to deny that such a deformation necessarily results in the occurrence of
bending moments. To state such observations precisely, it is absolutely essential to have a clear
kinematic de®nition of a bending deformation of a shell. One of the goals of this work is to produce
such a set of requirements for a bending strain measure for a ®rst-order, nonlinear shell theory.

Based on these criteria, two bending strain measures for a ®rst-order, nonlinear, elastic shell theory
are proposed. The measures possess the property of vanishing in rigid and pure-stretch deformations of
arbitrary magnitude of the shell midsurface, thus generalizing the KSB measure. The result is based on
an examination of the polar decomposition of the deformation gradient, when viewed as a two-point
tensor ®eld between two non-trivial manifolds, as would be the case for a curved shell. One of these
measures is discussed in detail since it has many similarities with the KSB measure of the linear theory.
It is shown that the proposed bending strain measure, when linearized about the reference geometry, is
identical to the KSB measure of the linear theory. The work conjugate stress and stress-couple
resultants, corresponding to the membrane strain characterized by the change in the ®rst fundamental
form and the proposed bending strain measure are also derived, as is an expression for the internal
virtual work solely in terms of these measures. The stress and stress-couple resultants, when evaluated at
the reference geometry, reproduce the corresponding KSB measures of the linear theory. Constitutive
equations for the general modi®ed stress and stress-couple resultants in terms of the derived membrane
and bending strain measure, along with the statement of internal virtual work can form the basic
ingredients for a numerical implementation of the theory via the ®nite element method. Finally, some
elementary deformations are considered to illustrate the predictions of the proposed bending strain
measure. Koiter (1966) and Budiansky (1968) have presented bending strain measures for a ®rst-order,
®nite deformation elastic shell theory, which linearize to the KSB measure. These measures are
compared with the measure proposed in this paper in the context of a biaxial stretching of a cylinder.
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2. Geometry, notation and terminology

A shell mid-surface is thought of as a 2D surface in ambient 3D space (the quali®cation `mid-surface'
will not be used in all instances Ð it is hoped that the meaning will be clear from the context). Both the
reference and deformed shell are parametrized by the same coordinate system fxag, a � 1, 2 (convected
coordinates). Points on the reference geometry are denoted generically by X and on the deformed
geometry by x. The reference unit normal is denoted by N and the unit normal on the deformed
geometry by n. A subscript comma refers to partial di�erentiation, e.g. @� �=@xa�� �; a: Summation over
repeated indices will be assumed. The metric tensors in the reference and deformed geometry will be
denoted by G and g, while the curvature tensors on the two geometries will be denoted by B and b,
respectively. Tensor indices will be raised or lowered with the use of G ab and Gab, where these are the
contravariant and covariant components of the tensor G and mutual inverses of each other. The
convected coordinate basis vectors in the reference geometry will be referred to by the symbols fEag and
those in the deformed geometry by feag, a � 1, 2: A suitable number of dots placed between two tensors
represent the operation of contraction, while the symbol 
 will represent a tensor product. Given a
tensor A of any order, its derivative @A=@x refers to the tensor product �@A=@xa� 
 ea, with a similar
interpretation for derivatives on the reference geometry.

If a property is said to hold `locally' about some point, then the property holds in some neighborhood
of the point. In referring to tangent spaces at a reference point and the deformed point, no distinction
will be made if one can be obtained by a constant translation of the other, i.e. the distinction arising
from the position of the base point will be ignored. A deformation will be considered as a smooth,
orientation-preserving, one-to-one map.

3. Bending strain measure

In setting out to propose a bending strain measure, it is useful to collect some physical notions that
would seem appropriate for a bending strain measure to embody. First and foremost, being a strain
measure, it should be a tensor that vanishes in rigid deformations. Secondly, it should be based on a
`proper' tensorial comparison of the deformed and undeformed curvature ®elds, b � @n=@x and B � @N=@X:
And thirdly, a vanishing bending strain at a point should be associated with any deformation that leaves the
orientation of the unit normal ®eld locally unaltered around that point. The ®rst two criteria are physically
intuitive requirements that are conventionally adopted in shell theory. The third criterion is intended to
incorporate the intuitive notion that bending at a point is associated with a change, under deformation,
of the orientation of tangent planes in a neighborhood of that point. As is shown in the following, a
su�cient condition for the third criterion to be satis®ed is that the deformation of the shell be a pure
stretch locally.

With the above criteria in mind, the classical bending strain measure

K � KabEa 
 Eb � ÿx, a � n, b ÿ X, a � N, b
�
Ea 
 Eb �1�

is considered. Let f � @x=@X be the deformation gradient. Then, the components Kab can also be
expressed as

Kab � Ea � fT � n, b ÿ Ea � N, b, �2�
from which it is apparent that the tensor K vanishes in rigid deformations. De®ning b�MfT � �@n=@x� � f,
it is also clear that
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K � b� ÿ B: �3�
In trying to accommodate the third criterion, it is noted that the components Kab can also be expressed
as,

Kab � Ea � U � rT � n, b ÿ Ea � N, b, �4�
where f � r � U is the right polar decomposition of the deformation gradient, and if it were possible to
de®ne a bending strain measure on the fEag basis with components,

K 0abMEa � U � rT � n, b ÿ Ea � U � n, b, �5�

then it is clear that at points where the deformation is a pure stretch, the matrix K 0ab would vanish.
Moreover, the rotation tensor r is the identity on the tangent space at such points for pure stretch
deformations which implies that the unit normal does not change orientation, a result that follows from
the de®nition of the domain and range of U�X�, which happen to be the reference tangent space at X
(Marsden and Hughes, 1994). Consequently, a covariant tensor on the reference geometry with
components K 0ab on the fEag basis would satisfy the third criterion laid out above if it could be shown
that the set of deformations that leave the orientation of tangent planes unaltered locally is identical to
the set of deformations whose deformation gradient ®eld around the point in question is a pure stretch
®eld. However, before this issue is discussed, a more elementary problem is to be confronted. U�X� is a
tensor on the tangent space at X onto itself and n, b is a vector belonging to the tangent space of x�X� in
the deformed geometry, so that, at ®rst glance, U � n, b does not make sense as a reasonable tensor
operation. But this turns out to be an insigni®cant obstacle since, for reasons mentioned above,

n�x�X�� � N�X� �6�
for all X in any neighborhood in which the deformation is a pure stretch, which implies that n; a�N; a

in that neighborhood. Hence, rede®ning a bending strain matrix as

~KabMEa � fT � n, b ÿ Ea � U � N, b � x, a � n, b ÿ Ea � U � N, b �7�
reveals that the tensor

ÄKMb� ÿ U � @N

@X
� ~KabEa 
 Eb �8�

embodies all the three criteria that were de®ned at the outset to be desirable in a bending strain measure
if locally pure stretch deformations are the only ones that leave the orientation of tangent planes
unaltered locally under deformation.

The question now arises as to whether pure stretch deformations are the only ones that leave the
orientation of the tangent plane unaltered. That this is not the case can be seen by considering
deformations whose rotation tensor corresponds to a `drill' rotation, i.e. a rotation tensor whose ®nite
rotation vector is oriented along N (re¯ections on the tangent space being ruled out due to the
restriction on deformations to satisfy the constraint of orientation preservation). Consequently, the
bending strain measure ÄK does not satisfy the third criterion for the class of all deformations. Moreover,
the rotation tensor r cannot be uniquely factored into a `drill' factor followed by another rotation, and
hence incorporating its e�ect in ÄK, as was done with the stretch tensor U, does not seem to be
straightforward.

If the de®nition of a bending strain measure laid down earlier is adhered to strictly, then ÄK does not
qualify as a measure of bending in a ®rst-order nonlinear shell theory, as would be the case for all other

A. Acharya / International Journal of Solids and Structures 37 (2000) 5517±55285520



existing proposals known to the author. However, it is noted here that the set of deformations that
leave the orientation of tangent planes unaltered locally can be divided into two classes Ð deformations
that have a pure stretch deformation gradient locally, and those that have their local rotation tensor
®eld consisting of either `drill' rotations or the identity tensor. It has been shown that ÄK vanishes in one
of these subclasses (pure stretch) and it will be shown that the other existing proposals fail to do so in
this subclass (Section 6.2). For the rest of the deliberations in this paper, the logical inconsistency
between the third de®ning criterion for a bending measure and reference to ÄK as a bending measure will
simply be accepted for the lack of a better alternative.

Before proceeding further, it is also easy to see, based on the line of argument pursued in developing
ÄK, that the quantity

Ea � rT � n, bEa 
 Eb �9�
can serve as a measure of bending deformation, reducing to its reference value in the case of rigid and
pure stretch deformations. An associated strain measure would beÿ

Ea � rT � n, b ÿ Ea � N, b
�
Ea 
 Eb,

which satis®es the requirements of a bending strain measure in a restricted sense, as outlined above for
ÄK: It is also easily veri®ed that all the above deformation and strain measures are invariant under
superposed rigid body deformations. In the following, we only pursue the strain measure ÄK in order to
make connections with existing work in the literature.

With a view toward providing a bending strain measure for a ®rst-order theory restricted by the
Kirchho� hypothesis, it is reasonable to demand a symmetric measure to e�ect a reduction in the
number of stress-couple resultant components that enter the theory (Budiansky and Sanders, 1963;
Sanders, 1963). With this motivation, a symmetrized measure

ÏKMb� ÿ 1

2

�
U � @N

@X
� @N

@X
� U
�
� �KabEa 
 Eb �10�

is introduced, where

�Kab � x, a � n, b ÿ 1

2

ÿ
Ea � U � N, b � N, a � U � Eb

�
: �11�

If the deformation is a pure stretch locally then Ea � U � N; b is symmetric in a and b since it is identical
to x; a � n; b (which is symmetric, as can be demonstrated through a simple calculation using the identity
x, a � n � 0), and hence �Kab vanishes in this case.

4. Linearization of ÏK

A connection between the linearization of the measure ÏK and the KSB measure of the linear theory,
ÃK, is established in this section. Henceforth the symbol d shall represent a variation of its argument. In
performing the linearization, the tensor will be considered as expressed in terms of components on the
fEag basis which is not deformation dependent. Consequently, it shall su�ce to consider the
linearization of only the components of the tensor. The normal n and its admissible variation, dyyy, will
be considered independent of x and dx in performing the linearization with the understanding that in
the ®nal result n is a function of the position mapping x and dyyy is a function of the mappings x and dx
for a ®rst-order shell theory.
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The linearization of �Kab, L �Kab, at fX, Ng in the direction of an admissible variation fdx, dyyyg is given
by

L �Kab�X, N; dx, dyyy� � �Kab�X, N� � d �Kab�X, N; dx, dyyy�: �12�

Now, �Kab�X, N��0: Let CMfT � f be the Right Cauchy Green deformation tensor.
Then

d �Kab�X, N; dx, dyyy� � dx, a � N, b � X, a � �dyyy� N�, bÿ1
2

�
Ea �

�
@U

@C
�G�:dC�X, dx�

�
� N, b � N, a

�
�
@U

@C
�G�:dC�X, dx�

�
� Eb

�
: �13�

From Hoger and Carlson (1984),

@U

@C
�C 0 �:dC � AC 0

1 C 0 � dC � C 0 ÿ AC 0
2
fC 0 � dC� dC � C 0 g � AC 0

3 dC �14�

where

AC 0
1 M

ÿ
IC 0 � 2

���������
IIC 0
p �ÿ3

2

2
���������
IIC 0
p ; AC 0

2 Mÿ AC 0
1

�
IC 0 �

���������
IIC 0

p �
;

AC 0
3 MAC 0

1

�
I 2
C 0 � 3IC 0

���������
IIC 0

p
� 3IIC 0

�
;

�15�

IC 0Mtr�C 0 �GT � � C 0abG
ab; IIC 0Mdet�C 0 � � �x, 1 � x, 2� � �x, 1 � x, 2�ÿ

X, 1 � X, 2

�� ÿX, 1 � X, 2

� : �16�

Consequently,

@U

@C
�G�:dC � 1

2
dC: �17�

Now C� x; a � x; bEa 
 Eb implies dC�X, dx� � �dx; a � X; b � X; a � dx; b�Ea 
 Eb: Therefore, on de®ning
B g

aMN; a � Eg, Ea � � @U
@C
�G�:dC� � N; b � 1

2�dx; a � X; d � X; a � dx; d�Bd
b: Hence,

L �Kab�X, N; dx, dyyy� � dx, a � N, b � X, a � �dyyy� N�, bÿ1
2

�
1

2

ÿ
dx, a � X, d � X, a � dx, d

�
Bd

b �
1

2

ÿ
dx, d

� X, b � X, d � dx, b
�
Bd

a

�
�18�

De®ning the symmetric part of the displacement gradient tensor as eee �
1
2 �d; a � Eb � Ea � d; b�Ea 
 Eb MeabEa 
 Eb, where d is the displacement ®eld, and WWW the linearized
rotation vector corresponding to the orthogonal transformation that orients the normal to the shell, it is
found that
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L �Kab�X, N; d, WWW� � d, a � N, b � Ea � �WWW� N�, bÿ1
2

�
eadBd

b � eabBd
a

�
� �Kab �KSB bending strain components�,

�19�

thus establishing the fact that ÏK can indeed be legitimately considered a nonlinear generalization of the
KSB bending strain measure.

5. Work conjugate stress measures

In terms of the stress resultant tensor, s, and stress-couple resultant tensor, m, on the deformed
geometry, tensors of membrane stress and bending moment,

N0Mjf ÿ1 � s � f ÿT and M0Mjf ÿ1 �m � f ÿT, �20�
can be de®ned on the reference geometry. In the above, j � �������

IIC
p

de®ned in Eq. (16) above. If two new
tensors of membrane and bending stress are now de®ned through the relations

NMN0 ÿ jf ÿ1 � b �mT � f ÿT and MM
1

2

ÿ
M0 �MT

0

� �21�

(Sanders, 1963; Fox, 1990) then it is well known that when the deformation of the shell is restricted by
the Kirchho� hypothesis, the three-dimensional statement of internal virtual work can be expressed as
(Sanders, 1963; Budiansky, 1968),�

A0

�
N:

1

2
dC�M:db�

�
dA0, �22�

where A0 is the two dimensional region occupied by the reference shell mid-surface.
Of course, an alternative way of expressing C is

C � fT � f � fT �
�

x, a � x, bea 
 eb
�
� f M

fT �
�
gabea 
 eb

�
� f M

g�: �23�

It is clear from Eq. (22) that N and M are work-conjugate measures to the membrane strain measure
EM1

2�CÿG� and the bending strain measure K de®ned in Eq. (3).
The work-conjugate stress pair to the strains fE, ÏKg is now sought. In other words, tensors ÇN and ÇM

need to be determined so that the relationship

ÇN:
1

2
dC� ÇM:d ÏK � N:

1

2
dC�M:db� �24�

is satis®ed. In components with respect to the fEag and fEag bases, Eq. (24) reduces to

_N
ab 1

2
dCab � _M

ab
d �Kab � Nab 1

2
dCab �Mabdb�ab: �25�

From the de®nition of �Kab (11),

Mabdb�ab �Mabd �Kab �MeZ1

2

ÿ
Ee � dU � N, Z � EZ � dU � N, e

�
: �26�
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On performing somewhat tedious algebraic manipulations using Eqs. (14)±(16), it can be shown that

MeZ1

2

ÿ
Ee � dU � N, Z � EZ � dU � N, e

� �MeZPab
eZ
1

2
dCab

where

Pab
eZ �

AC
1

2

�
C a

eC
b
nB

n
Z � C b

eC
a
nB

n
Z � C a

ZC
b
nB

n
e � C b

ZC
a
nB

n
e

�
� AC

3

2

�
G a

eb
b
Z � G b

eB
b
Z � G a

ZB
b
e � G b

ZB
a
e

�
ÿ AC

2

2

�
C a

eB
b
Z � C b

eB
a
Z � C a

ZB
b
e � C b

ZB
a
e � G a

eC
bkBZk � G a

ZC
bkBek � G b

eC
akBZk

� G b
ZC

akBek

�
:

Consequently, from Eqs. (25) and (26) it can be seen that the pair

ÇNM
�
Nab �MeZPab

eZ

�
Ea 
 Eb; ÇMMM �27�

is work-conjugate to the strain pair fE, ÏKg, and ÇN and ÇM are both symmetric. As expected, if the
reference con®guration is considered to be the deformed geometry then ÇN is given by the expression�

Nab � 1

2

�
MaZBb

Z �MbZBa
Z

��
Ea 
 Eb,

which is exactly the expression for the KSB membrane stress in the linear theory. It is also clear at this
point that the exact expression for the internal virtual work (22) can be written as�

A0

ÿ
ÇN:dE� ÇM:d ÏK

�
dA0:

It should be noted here that even though the expression for ÇN is quite cumbersome, in actual
applications it is replaced by a constitutive equation in terms of E and ÏK so that it does not have to be
dealt with directly. In the context of numerical solution procedures based on implicit ®nite element
methods, the variation of �Kab would be required and is given by

d �Kab � db�ab ÿ
1

2
PeZ

abdCeZ �
�
dx, a � n, b � x, a � �dyyy� n�, b

	ÿ 1

2
PeZ

abdCeZ,

where dx and dyyy are admissible variations as de®ned in Section 4.

6. Examples

6.1. Uniform normal de¯ection

In this example, a deformation characterized by a uniform normal de¯ection of the reference shell is
considered. It is shown that such a deformation indeed corresponds to a situation where the orientation
of the tangent planes around any point are not altered, as is perhaps intuitively obvious. Hence, it
would seem reasonable to demand that a bending strain measure vanish for such a deformation, and it
is shown that the measure ÏK does so vanish for most reasonable values of the magnitude of the
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de¯ection. In Niordson (1985, pp. 128±129), it is shown that the KSB measure also vanishes in such
deformations, up to the accuracy of the linear theory. However, Niordson (1985, p. 129) states ``it is
di�cult to ®nd a sound physical reason for preferring a measure having this particular property . . . ''. It
is hoped that the preceding sections of this paper and this example furnish a convincing physical reason
for such a preference.

A deformation of the form

x�X� � X� fN�X� �28�
is considered, where f does not vary with X. Since N, a � N � 0, the deformation gradient f�X� given by

f�X� � x, a 
 Ea �29�
maps the reference tangent space at X onto itself. Hence, f may be written in the form

f � fabEa 
 Eb M

F

where

Fab � fab � X, a � f � X, b � X, a � x, b � X, a � X, b � fX, a � N, b � X, a � X, b ÿ fN � X, ab �30�
and hence F is symmetric. The matrix Fab is given by

�
Fab

� � �X, 1 � X, 1 � fN, 1 � X, 1 X, 1 � X, 2 � fN, 2 � X, 1

X, 2 � X, 1 � fN, 1 � X, 2 X, 2 � X, 2 � fN, 2 � X, 2

�
: �31�

Because the orientation of the tangent planes to the shell is not altered by deformation, ideally the
measure ÏK should vanish without quali®cation. However, this is not the case as shown below.

Introducing local lines of curvature orthogonal coordinates, i.e. the coordinates fxag are chosen so
that �@N=@X� � X; a�laX; a (no sum on a), where la are the eigenvalues of the symmetric tensor @N=@X
and X; a � X; b�0 if a 6�b, the matrix Fab can be brought to the form

�
Fab

� � �X, 1 � X, 1�1� fl1 � 0
0 X, 2 � X, 2�1� fl2�

�
, �32�

and it is clear that only under certain circumstances is the symmetric tensor F positive-de®nite and hence
a pure stretch (by the uniqueness of the polar decomposition). Some such important cases are:

1. If the de¯ection is small in the sense of line jflaj < 1, a � 1, 2, i.e. the magnitude of the product of
the de¯ection and the principal curvature of the reference shell is small. This is always the case within
the assumptions of the linear theory.

2. If the reference shell is convex and f > 0 (`outward' de¯ection), or the reference shell is concave and
f < 0 (`inward de¯ection').

3. If l1 and l2 do not have the same sign but fla>ÿ1, a � 1, 2:

In all of these cases the bending tensor ÏK vanishes.
It is also pointed out here that in the cases when the deformation gradient is not a pure stretch it

necessarily di�ers from one by a `drill' rotation (re¯ections not being considered even though
kinematically possible, a special case being a `saddle-shaped' reference geometry with arbitrarily large
values of f ) since the overall deformation gradient is such that the orientation of the tangent planes is
unaltered.

Another point to be noted is that the magnitude of f cannot be unrestricted for arbitrary reference
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geometries once physical deformations restricted by balance laws of linear and angular momentum and
realistic constitutive equations are considered, since it is easily observed that unrestricted deformations
of this class, for arbitrary reference geometries, can lead to self intersection of the shell.

6.2. Biaxial stretching of a cylinder

A quadrant of a cylindrical surface of radius R and length L is subjected to a stretch in the axial
direction in the amount a and a uniform radial displacement of Dr (the geometry for this example is
adapted from Fox (1990), where the case of uniform radial expansion is considered). A rectangular
Cartesian basis fci g, i � 1, 3 is used for ambient space. The axis of the cylinder is parallel to c1: The
cylindrical surface is parametrized by the coordinates fxag, a � 1, 2, where x1 2 �0, L� and x2 2 �0, R�:
The reference and deformed position maps are given by

X � x1c1 � x2c2 �
�����������������������
R2 ÿ

ÿ
x2
�2q

c3

x � ax1c1 �
�
1� Dr

R

�
x2c2 �

�
1� Dr

R

� �����������������������
R 2 ÿ

ÿ
x2
� 2q

c3; a > 0, Dr > 0: �33�

Now,

X, 1 � c1; X, 2 � c2 ÿ x2�����������������������
R2 ÿ

ÿ
x2
�2q c3,

x, 1 � aX, 1; x, 2 �
�
1� Dr

R

�
X, 2, �34�

which proves that the deformation gradient F� x; a 
 Ea maps the reference tangent space into itself at
every point of the shell and hence the orientation of tangent planes remains unaltered under
deformation, thus constituting a non-bending deformation. Hence, the deformation gradient can be
written in the form

F � FabEa 
 Eb

where

Fab � Ea � F � Eb � X, a � x, b,

�
Fab

� �
2664
a
ÿ
X, 1 � X1

�
0

0

�
1� Dr

R

�ÿ
X, 2 � X2

�
3775: �35�

The deformation gradient is symmetric, positive-de®nite and, therefore, a pure stretch. Consequently,
ÏK � �KabEa 
 Eb vanishes in this deformation.
Next, the measure K � KabEa 
 Eb is considered. From the above analysis, it is clear that n � N,

which can also be directly con®rmed from the expression x; 1 � x; 2�a�1� Dr
R �X; 1 � X; 2: Therefore,
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n, 1 � N, 1 � 0; n, 2 � N, 2 � 1

R
c2 ÿ x2

R

�����������������������
R 2 ÿ

ÿ
x2
� 2q c3: �36�

Now, b�ab�x; a � N; b, Bab�X; a � N; b and Kab � b�ab ÿ Bab imply

�
b�ab
� �

264 0 0

0
R� Dr

R2 ÿ
ÿ
x2
�2
375; �

Bab
� �

264 0 0

0
R

R2 ÿ
ÿ
x2
�2
375; �

Kab
� �

264 0 0

0
Dr

R2 ÿ
ÿ
x2
�2
375: �37�

It is noted that Kab di�er from 0 by a ®rst order term in the normal displacement.
The nonlinear bending strain measure proposed by Koiter (1966) is considered next. The measure is

given by the following expression;

K 00 � K
00
abEa 
 Eb

where

K
00
ab � Kab ÿ 1

2

�
EgbB

g
a � EgaB

g
b

�
: �38�

Now, G ab��X; a � X; b�ÿ1; Eab� 1
2 �Cab ÿ Gab�; B g

a�BamG
mg imply

�G mg � �

264 1 0

0
R2 ÿ

ÿ
x2
�2

R2

375; �
Eab

� � 1

2

2664
a2 ÿ 1 0

0
2DrR� Dr2

R2 ÿ
ÿ
x2
�2
3775; �

B g
a

� �
24 0 0

0
1

R

35

h
K
00
ab

i
�

2664
0 0

0
ÿDr2

2R

h
R2 ÿ

ÿ
x2
�2i

3775:
�39�

The components of Koiter's measure di�er from 0 by second order terms in the normal displacement for
this deformation, which means that in the context of a linear theory, it vanishes for such a deformation.
In fact, it can be shown that Koiter's measure is also a valid generalization of the KSB measure of the
linear theory, in the sense that its linearization is the KSB measure. However, in the context of exact
kinematics, it does not vanish in non-bending deformations.

Finally, a nonlinear bending strain measure proposed by Budiansky (1968) is considered. The measure
is given by the following expression;

K
000 � K

000
abEa 
 Eb

where

K
000
ab � jb�ab ÿ Bab ÿ 1

2

�
EgbB

g
a � EgaB

g
b

�
ÿ E g

gBab; C � det
ÿ
Cab

�
; G � det

ÿ
Gab

�
; j �

�����
C

G

r
�40�

Now,
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j � a

�
1� Dr

R

�
; E g

g �
1

2

(
�a2 ÿ 1� � 2Dr

R
�
�
Dr
R

�2
)
: �41�

Consequently,

h
K
000
ab

i
�

264 0 0

0 R

�
aÿ a2

2
ÿ 1

2

�
�
�
2Dr� Dr2

R

�
�aÿ 1�

375, �42�

and it is interesting to note that for a � 1 (radial expansion) K
000
ab vanishes. De®ning u1Max1 ÿ x1,

�aÿ 1� � u1

x1
;

�
aÿ a2

2
ÿ 1

2

�
� ÿ�u

1�2ÿ
x1
�2 : �43�

Consequently, the components of Budiansky's measure di�er from zero by second order terms in the
displacement. As shown by Budiansky (1968), the measure also linearizes to the KSB measure of the
linear theory and, in that sense, is a valid generalization of the KSB measure.
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